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Abstract
A generalized derivation of the equations governing surface carrier diffusion in
the surface region of an insulator is presented, based on the Mott–Gurney model
of ionic diffusion as first proposed in Liesegang et al (1995 J. Appl. Phys. 77
5782; 1996 J. Appl. Phys. 80 6336). The resulting non-linear equations are
decoupled for the case of one-dimensional diffusion and we show that the decay
of the electric field is described by the inviscid Burgers equation. Imposing
initial and boundary conditions reflecting the experimental configuration for
a Cartesian system as discussed in Liesegang et al, a general solution for the
carrier density in the surface of an insulating sample is derived for the case of
one-dimensional charge motion.

1. Introduction

The electrical resistivity of insulating materials varies over many orders of magnitude, with
the polymeric subgroup being among the highest resistivity materials; e.g., the resistivity of
fluoropolymer materials is known to be the highest in value.

Common measuring techniques for the resistivity of insulators normally use the application
of an electric field and measurement of the resultant current and the potential difference between
electrode contacts on the sample. In these experiments, reliable measurement largely depends
on obtaining good surface contact with electrodes over contact areas which are usually less
than about 1 mm2. The low conductivity of insulating polymers means there is usually only
a small current flow, which is difficult to measure accurately. This in turn suggests that
there is not much reliable reported experimental data for surface resistivity, especially for
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highly insulating polymeric materials. Consequently, there have been inconsistencies between
descriptions of the nature of the transport process. Some authors [3, 4] suggest ionic conduction
as the charge transport mechanism, while others [5] suggest electronic charge transfer. Later
literature [6–8] suggests that charge transport mechanisms may involve electrons, holes or
ions, or combinations of all three, with the dominant process being determined by the material
involved and the details of the experimental situation.

More recent techniques to measure charge dynamics in polymer materials have used
a scanning electron microscope, which delivers a non-penetrating electron beam, and a
time-resolved current measuring mechanism [9]. These techniques use methods such as
pressure wave propagation [10–12],pulsed electro-acoustic methods [13–15] and mirror image
methods [16–20]. The effects of charge accumulation are monitored via a measured current as
the sample is irradiated (and so charged) until the accumulated charge reaches an asymptotic
steady state. These techniques describe measurements rather than a fully developed theoretical
description of the charge transport processes which give rise to the measurements.

In an alternative approach to resistivity measurement [1, 2], the sample is first charged and
then a portion of its geometry is grounded. The sample is placed in a cylindrical capacitor and
charge dissipation is measured via induced charge. This technique is similar to that of [9], but
the processes are effectively reversed. In [9], materials were observed as they charged up by
trapping electrons in a surface layer, while in [1, 2], materials were observed as they discharged
via effective ion carrier diffusion. In [1, 2], a theoretical model was proposed. The model uses
a classical rather than quantum mechanical description, appropriate to slowly diffusing large
mass ion transport. The model gives non-linear differential equations derived from classical
electromagnetic theory and the Mott–Gurney model [21]. The theory gives good reproducible
agreement with experimental results for effectively one-dimensional surface charge transport.

In this paper the equations describing the charge carrier diffusion on a sample surface in a
coordinate independent form are derived. We show that one-dimensional transport is a special
case which reduces to the inviscid Burgers equation [22]. This inviscid Burgers equation can
then be solved with appropriate boundary conditions for general initial conditions.

2. Isotropic charge decay model

Following a similar approach as in [1] we begin by deriving a general non-linear carrier
diffusion equation for a sample of arbitrary geometry by using an isotropic Ohm’s law

J = σE (2.1)

where J is the current density, E is the electric field and the time and position dependent
conductivity is given by

σv(r, t) = q2 D

kT
nv(r, t). (2.2)

This is the Nernst–Einstein equation which can be derived from the Mott–Gurney model of
ionic diffusion [21]. We will generally assume that the diffusion coefficient D is a constant
scalar, appropriate for an isotropic medium with uniform conductivity. The charge on the
diffusing species is q , with number density nv(r, t), and T is the absolute temperature in
kelvins while k is Boltzmann’s constant. The electric field in equation (2.1) may be written in
terms of a potential function φ as

E = −∇φ. (2.3)

We next assume that the ionic flow or carrier diffusion obeys an equation of continuity, so that

∇ · J = −∂ρ

∂ t
(2.4)
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where ρ is the charge density; thus

∇ · J = −q
∂nv

∂ t
. (2.5)

Taking the divergence of (2.3) we obtain the Poisson equation for the potential function

∇2φ = −∇ · E = −qnv

εε0
(2.6)

where ε0 is the permittivity of free space and ε is the dielectric constant of the insulating
medium. It is important to note that since this potential function is defined from the electric
field governing the carriers by equations (2.1)–(2.3), it is only applicable to the domain where
those carriers are defined. Elsewhere it must satisfy Laplace’s equation.

It is then simple to derive the result

∂nv

∂ t
= µ(∇φ · ∇nv − αn2

v) (2.7)

where the mobility µ and constant α are given by

µ = q D

kT
and α = q

εε0
. (2.8)

The problem is then to solve equation (2.7) and the Poisson equation (2.6) which is coupled
to it. Equation (2.7) may be viewed as an evolution equation, which propagates the potential
from equation (2.6) forward in time.

Because we may write the carrier density nv in terms of the divergence of the electric
field, we may decouple the equations to obtain

∂

∂ t
(∇ · E) = −µ(E · ∇(∇ · E) + (∇ · E)2) = −µ∇ · (E(∇ · E))

hence

∇ ·
(

∂

∂ t
E + µ(E(∇ · E))

)
= 0. (2.9)

This non-linear equation describes the evolution of the electric field in the sample, during
charge decay from the sample.

3. Surface carrier diffusion in Cartesian coordinates

We first analyse this charge transport model by considering a similar model as first proposed
in [1]; namely, a finite rectangular sample (typically of sheet material) in which we assume the
diffusing carrier density nv is concentrated mainly in a layer of thickness �z from the surface
of the sample defined to be at z = 0. The system of coordinates applied to the sample, as well
as an illustration of the residential depth of the carrier density, is depicted in figure 1.

The assumption of a small charge residence depth stems from the physical charging process
as outlined in the atmospheric resistivity measurement technique [1, 2]. The sample may
be charged via the removal or addition of electrons from its surface. Under the charging
conditions outlined in [1] and [2] this effectively leaves a very shallow layer containing the
majority of positive ionic charge or ‘holes’ near the surface of the sample (z = 0). Even
though the grounded strip in [1] and [2] is ‘painted’ on the surface of the sample, as depicted
in figure 1, we assume that since the actual depth of carriers in the surface is very small, the
average force acting on carriers in the z-direction is negligible. Therefore there is assumed
no overall motion of carriers in the z-direction. From the boundary conditions depicted in
figure 1 it is also assumed that the majority of carrier motion is along the x-axis. Taking this
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Figure 1. Geometry of carrier transport experiment on an insulator surface, depicting a grounded
strip and the carrier density skin depth.

(This figure is in colour only in the electronic version)

into account we simplify the three-dimensional system to that of investigating carrier diffusion
in an infinitesimally thin strip �y along the centre of the sample’s surface. As was stated
in [1], this approximation provides a means to analyse the important underlying processes of
the diffusion mechanism. In doing so we have assumed that the carriers in the entire surface
region of the sample follow the description of those that are contained along its centre; we
have effectively removed any carrier dependence on z and y and have reduced the system to a
study in one dimension.

Equations (2.1)–(2.6) reduced to their one-dimensional equivalent are

J (x, t) = qµn(x, t)E(x, t) (3.1)

∂2

∂x2
φ(x, t) = − ∂

∂x
E(x, t) = −αn(x, t), (3.2)

and thus it is easily shown that (2.7) reduces to
∂

∂ t
n(x, t) = µ

(
∂

∂x
φ(x, t)

∂

∂x
n(x, t) − αn(x, t)2

)
(3.3)

in agreement with the result from the original derivation in [1].

4. The one-dimensional case

In the one-dimensional case, we envisage an experimental arrangement shown in figure 2.
The insulator sample occupies the region 0 � x � L with the end at x = 0 earthed, so

that φ(0, t) = 0. This sample is enclosed in an earthed cage. The cage crosses the x axis at
x = H , where the potential must also be zero. Charge diffusion is governed by equations (3.2)
and (3.3) which are augmented on L < x � H by

∂ E

∂x
(x, t) = 0. (4.1)

As was the case for the general three-dimensional derivation, we may decouple equations (3.2)
and (3.3) to obtain the one-dimensional equivalent of (2.9); namely

∂2 E

∂ t ∂x
+ µ

∂

∂x

(
E

∂ E

∂x

)
= 0. (4.2)
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Figure 2. Sketch of experimental arrangement for one-dimensional charge diffusion studies,
depicting the sample connected via a grounded strip and chain to a surrounding grounded chamber.

Integrating (4.2) with respect to x we have the quasi-linear evolution equation

∂ E

∂ t
+ µE

∂ E

∂x
= F(t) (4.3)

where F(t) is some function dependent only on t . Equation (4.3) is the non-homogeneous
inviscid Burgers equation (sometimes known as a forced inviscid Burgers equation).

It is now convenient to introduce scaled functions and variables. We write

x = Lξ, t = T

αµn0
and h = H

L
(4.4)

and scale our carrier density via the transform

n(x, t) = n0 N

(
x

L
, αµn0t

)
(4.5)

where the initial carrier density is defined via

n(x, 0) = n0 N0(ξ) with
∫ 1

0
N0(s) ds = 1. (4.6)

We then further write

E(x, t) = αn0 Le(ξ, T ), J (x, t) = qαµn2
0 L j (ξ, T )

and φ(x, t) = αn0 L2ϕ(ξ, T ).
(4.7)

In terms of these definitions (3.1) and (3.2) become

∂e

∂ξ
(ξ, T ) = N(ξ, T ) for 0 � ξ � 1 and T � 0 (4.8)

and
∂ j

∂ξ
(ξ, T ) = −∂ N

∂T
(ξ, T ) for 0 � ξ � 1 and T � 0. (4.9)

These are augmented by (4.1):

∂e

∂ξ
(ξ, T ) = 0 for 1 < ξ � h and T � 0 (4.10a)

where we may write the scaled electric field in terms of a scaled potential function

e(ξ, T ) = −∂ϕ

∂ξ
(ξ, T ) (4.10b)

which must be continuous over the whole domain and satisfy the boundary conditions that
reflect the earthed end of the sample and of the external chamber; i.e.,

ϕ(0, T ) = ϕ(h, T ) = 0. (4.11)
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The inviscid Burgers equation may be written as

∂e

∂T
(ξ, T ) + e(ξ, T )

∂e

∂ξ
= ω′′(T ). (4.12)

We have chosen for later convenience to write the scaled function F(t)
µα2n2

0 L
via the second

derivative of an arbitrary function ω(T ). Equations (4.8) and (4.9) are valid only for
the domain of the sample surface; elsewhere the electric potential must satisfy Laplace’s
equations (4.10a), (4.10b). Further to this we choose to modify the equation for the electric
field in (4.8) in order to obtain the correct behaviour for the current density at the free end of the
sample (ξ = 1). We do this by introducing a weighted delta function allowing the possibility
that as charge diffuses on the surface of the sample, some charge may pile up at the end of the
sample at ξ = 1. The reason for this will become clear in subsequent sections. Equation (4.8)
becomes
∂e

∂ξ
(ξ, T ) = N(ξ, T ) + �(T )δ(ξ − 1) for 0 � ξ � 1 and T � 0

with �(0) = 0. (4.13)

The electric field, however, is being described over different media; equation (4.8) is valid on
the domain of the sample and thus in a dielectric medium; equations (4.10a), (4.10b) describes
the electric field off the sample in vacuum (in [1] it is actually atmosphere, but we assume
vacuum for convenience). Therefore considering the normal component of the displacement
field across the boundary of the sample at ξ = 1 we have

e(1+, T ) − εe(1−, T ) = �(T ) (4.14)

where the plus and minus signs indicate the direction to the limit.
Integrating (4.13) we obtain

e(ξ, T ) =
∫ ξ

0
N(s, T ) ds + e(0, T ); (4.15)

so that by (4.10a), (4.10b) we have

∂ϕ

∂ξ
= −

∫ ξ

0
N(s, T ) ds − e(0, T );

and integration again gives

ϕ(ξ, T ) = −
∫ ξ

0
dk
∫ k

0
N(s, T ) ds − ξe(0, T )

where we have used the fact that the potential is zero at the earthed end ξ = 0 for all time T .
Noting that∫ ξ

0
s N(s, T ) ds = ξ

∫ ξ

0
N(s, T ) ds −

∫ ξ

0
dk
∫ k

0
N(s, T ) ds

via integration by parts, we then have

ϕ(ξ, T ) = −ξ

∫ ξ

0
N(s, T ) ds +

∫ ξ

0
s N(s, T ) ds − ξe(0, T ).

Hence at the inner limit as we approach the sample’s free end

ϕ(1−, T ) = −
∫ 1

0
N(s, T ) ds +

∫ 1

0
s N(s, T ) ds − e(0, T ).

The fact that the potential must
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• be continuous over the entire domain, particularly at ξ = 1,
• satisfy (4.10a), (4.10b),
• equal zero at ξ = h,

then gives

ϕ(ξ, T ) = −h − ξ

h − 1

(∫ 1

0
N(s, T ) ds −

∫ 1

0
s N(s, T ) ds + e(0, T )

)
on 1 < ξ � h.

(4.16)

Therefore we have

e(1+, T ) = − 1

h − 1

(∫ 1

0
N(s, T ) ds −

∫ 1

0
s N(s, T ) ds + e(0, T )

)
and hence the discontinuity of the electric field at the end of the sample, given by (4.14)
becomes

e(1+, T ) − εe(1−, T ) = − 1

h − 1

(∫ 1

0
N(s, T ) ds −

∫ 1

0
s N(s, T ) ds + e(0, T )

)

− ε

(∫ ξ

0
N(s, T ) ds + e(0, T )

)
= �(T ).

By manipulation one may obtain

e(0, T ) = −
∫ 1

0
N(s, T ) ds +

1

h̄

∫ 1

0
s N(s, T ) ds − (h − 1)

h̄
�(T )

where h̄ = 1 + ε(h − 1).
Hence the electric field (4.15) may now be expressed as

e(ξ, T ) =
∫ ξ

0
N(s, T ) ds −

∫ 1

0
N(s, T ) ds +

1

h̄

∫ 1

0
s N(s, T ) ds − (h − 1)

h̄
�(T ) (4.17)

with initial condition given by

e(ξ, 0) =
∫ ξ

0
N0(s) ds − 1 +

1

h̄

∫ 1

0
s N0(s) ds ≡ g(ξ) (4.18)

and the boundary condition at the end of the sample as

e(1−, T ) = 1

h̄

∫ 1

0
s N(s, T ) ds − (h − 1)

h̄
�(T ). (4.19)

We now obtain a general solution for the inviscid Burgers equation of (4.12) via the method
of characteristics. It should be noted that similar solutions are obtainable via the Hopf–Cole
transform [23, 24]; however, the method of characteristics provides a more general approach.

We first make the substitution

e(ξ, T ) = Q(ξ, T ) + ω′(T ), (4.20)

which makes no assumptions. The initial condition for Q is given by

Q(ξ, 0) = g(ξ) − ω′(0) (4.21)

and we note that by (4.18), g(ξ) is an increasing function of ξ . The inviscid Burgers equation
of (4.12) then becomes

∂ Q

∂T
(ξ, T ) + (Q(ξ, T ) + ω′(T ))

∂ Q

∂ξ
(ξ, T ) = 0. (4.22)
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The method of characteristics assumes that we can first parametrize any curve in the (ξ, T )

plane via a parametric variable, i.e.,

ξ = ξ(s) T = T (s)

where s is a measure of the distance along the curve. Considering

dQ

ds
(ξ(s), T (s)) = ∂ Q

∂ξ

dξ

ds
+

∂ Q

∂T

dT

ds

we note from that for the parametrization to equate to (4.22) we must have

dQ

ds
(ξ(s), T (s)) = 0

dT

ds
= 1

dξ

ds
= Q(ξ(s), T (s)) + ω′(T ). (4.23)

From this we see that s = T , as well as

Q(ξ(T ), T ) = K (ξ(0)) (4.24)

where K (ξ(0)) = constant. Additionally from (4.23) we must have

dξ(T )

dT
= Q(ξ(T ), T ) + ω′(T ) = K (ξ(0)) + ω′(T ).

This implies

ξ(T ) = K T + ω(T ) − ω(0) + ξ(0);
thus

ξ(0) = ξ(T ) − K T − ω(T ) + ω(0). (4.25)

Along these characteristic curves, by (4.24), Q is constant, therefore we may express it in
terms of the initial condition in (4.21); i.e.,

Q(ξ(T ), T ) = Q(ξ(0), 0) = g(ξ(0)) − ω′(0) = K . (4.26)

Therefore multiplying by T and substituting for K T in (4.25) we obtain

ξ(0) = ξ(T ) − T g(ξ(0)) − (T ) (4.27)

where

(T ) = (ω(T ) − ω(0) − T ω′(0))

and we note that

(0) = ′(0) = 0. (4.28)

Any point in the (ξ, T ) plane may be given by a characteristic curve ξ(T ) which necessarily
has an ‘initial’ point ξ(0). Thus ξ(0) defines which characteristic curve a point is on, and can
be expressed as a function of (ξ, T ). We write ξ(0) = η(ξ, T ) and then have the relation

η(ξ, T ) = ξ − T g(η(ξ, T )) − (T ). (4.29)

Therefore (4.26) becomes

Q(ξ(T ), T ) = Q(ξ(0), 0) = g(η(ξ, T )) − ω′(0)

and from (4.20) and the definition in (4.28) we then have

e(ξ, T ) = g(η(ξ, T )) + ′(T ), (4.30)

which is a completely general solution for the original non-homogenous inviscid Burgers
equation.

We note that
∂η

∂ξ
(ξ, T ) = 1

1 + T g′(η(ξ, T ))
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where g′(η) = dg
dη

and hence

∂e

∂ξ
(ξ, T ) = g′(η(ξ, T ))

1 + T g′(η(ξ, T ))
,

∂e

∂T
(ξ, T ) = − g(η(ξ, T ))g′(η(ξ, T ))

1 + T g′(η(ξ, T ))
.

Thus solutions of (4.30) are only continuous where 1 + T g′(η(ξ, T )) �= 0.
We also have

∂e

∂ξ
(ξ, T ) = N(ξ, T ) = g′(η(ξ, T ))

1 + T g′(η(ξ, T ))
(4.31)

and further

j (ξ, T ) = g′(η(ξ, T ))

1 + T g′(η(ξ, T ))
(g(η(ξ, T )) + ′(T )). (4.32)

From (4.13) we see that we have a defined carrier density via

∂e

∂ξ
(ξ, T ) = N(ξ, T ) + �(T )δ(ξ − 1) ≡ N̄(ξ, T ).

From the continuity condition of (4.9) we have

∂ j

∂ξ
(ξ, T ) = − ∂

∂T
N̄ (ξ, T );

integrating over a small neighbourhood near the free end we have

j (1 + ε, T ) − j (1 − ε, T ) = − d

dT

∫ 1+ε

1−ε

N(s, T ) + �(T )δ(s − 1) ds.

Since we only have carriers defined on ξ ∈ [0, 1] and strictly no current density beyond the
free end of the sample, in any limit, we have

j (1 − ε, T ) = d

dT

(∫ 1

1−ε

N(s, T ) + �(T )δ(s − 1) ds

)

= d

dT
(nT (1, T ) − nT (1 − ε, T ) + �(T ))

where we have used well known properties of the delta function, and where nT (ξ, T ) represents
the total number of carriers which we assume for the time being is continuous on the sample.
Allowing ε → 0 we have

j (1−, T ) = d�(T )

dT
,

and thus

�(T ) =
∫ T

0
j (1−, τ )dτ. (4.33)

5. Constant initial carrier density

Assuming as in [1, 2] that the initial carrier distribution in the surface layer of the sample is
constant, we take N0(ξ) = 1 and have from (4.18)

g(ξ) = ξ − 1 +
1

2h̄
(5.1)

and hence from (4.29)

η(ξ, T ) = ξ − (T ) + T (1 − 1
2h̄

)

T + 1
; (5.2)
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therefore

e(ξ, T ) = ξ − (T ) + (1 − 1
2h̄

)

T + 1
+ ′(T ) (5.3)

and we obtain the carrier density and current density as

N(ξ, T ) = 1

T + 1
(5.4)

and

j (ξ, T ) = ξ − (1 − 1
2h̄

)

(T + 1)2
+

d

dT

(
(T )

T + 1

)
= d

dT

(
(T ) − ξ +

(
1 − 1

2h̄

)
T + 1

)
. (5.5)

From (4.33) we have

�(T ) =
∫ T

0

d

dτ

(
(τ) − 1

2h̄

(τ + 1)

)
dτ = (T ) − 1

2h̄

T + 1
+

1

2h̄
= (T ) + T

2h̄

T + 1
(5.6)

since �(0) = 0.
From the integral representation of the electric field at the free end of the sample in (4.19)

we have

e(1−, T ) = 1

h̄

∫ 1

0
s N(s, T ) ds − (h − 1)

h̄
�(T ) = 1

2h̄(T + 1)
− (h − 1)

h̄
�(T ),

which must equate to the ‘propagated’ electric field obeying the inviscid Burgers equation,
i.e., from (5.3) we have

e(1−, T ) = 1

2h̄(T + 1)
− (h − 1)

h̄
�(T ) = g(η(ξ, T )) + ′(T ) =

1
2h̄

− (T )

T + 1
+ ′(T ),

so that

′(T ) − (T )

T + 1
+

(h − 1)

h̄
�(T ) = 0.

Substituting for the value of �(T ), we obtain

′(T ) − γ
(T )

T + 1
= − (h − 1)T

2h̄2(T + 1)
(5.7)

where

γ ≡ 1 − (h − 1)

h̄
; 0 < γ < 1.

Therefore noting that (5.7) may be written as

d

dT
((T )(T + 1)−γ ) = − (h − 1)T

2h̄2(T + 1)γ +1

we may integrate to obtain

(T ) = 1

2h̄γ
((T + 1)γ − 1 − γ T ), (5.8)

yielding

�(T ) = ((T + 1)γ − 1)

2h̄γ (T + 1)
. (5.9)

The current density is therefore given by

j (ξ, T ) = N(ξ, T )e(ξ, T ) = ξ − (1 − 1/2h̄)

(T + 1)2
− h − 1

h̄

�(T )

(T + 1)
. (5.10)
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Figure 3. Plot of j (1−, T ) (heavy) and �(T ) (fine) for h = 3, ε = 5, ⇒ h̄ = 11 and
γ ∼= 0.818 182.

Plotting (5.9) and (5.10) we have the following (figure 3) for the current density and the weight
of the delta function at the free end of the sample, i.e., for ξ = 1.

We see that the current at ξ = 1 is initially positive, with carriers feeding into the delta
function, and initially decreases sharply, becoming negative at

T = −1 +

(
1

1 − γ

)1/γ

,

after which it remains negative, slowly increasing towards zero.
From the current density given in (5.10) we note that if we were to consider a carrier

density with no charge defined on the free end of the sample, that is we set �(T ) = 0 and note
that all boundary and initial conditions derived in section 4 still apply, then we obtain

j (ξ, T ) = ξ − (1 − 1/2h̄)

(T + 1)2
. (5.11)

Thus at the free end of the sample we have

j (1−, T ) = 1

2h̄(T + 1)2
> 0

and hence we have a description of carriers flowing off the sample. This of course is not
physically acceptable and we now see that the inclusion of the delta function in the description
of the carrier density over the sample is necessary in order for the current density to adhere
to the physical bounds of the sample. This also shows that the function F(t) arising from
integration of (4.2) (i.e., as shown in (4.3)) is determined by the boundary condition at the free
end of the sample. We note that if we did not have a boundary condition for E at the free
end of the sample, F(t) would remain undetermined and the problem, while being solvable,
would not be well-posed (or have a unique solution). This is most easily seen by noting the fact
that F(t) may be ‘removed’ via the Orlowski–Sobczyk transform [25]—whereupon it remains
arbitrary in the final result, until determined via boundary conditions. This fact justifies the
inclusion of the weighted delta function in the carrier distribution as this forces a boundary
condition at the free end of the sample, thus determining F(t) uniquely such that the physical
description is self-consistent.

Inverting the transforms for the carrier density in (5.4) we obtain

n(r, t) = n0

µαn0t + 1
, (5.12)
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Figure 4. Schematic diagram depicting the initial discontinuous carrier distribution.

which is the same equation obtained in [1] and which was referred to as an asymptotic
approximation for small time t 	 1. The reason for this solution being referred to as an
approximation for t 	 1 stems from analysing (3.3), namely,

∂n

∂ t
(x, t) = µ

(
∂n

∂x
(x, t)

∂φ

∂x
(x, t) − αn2(x, t)

)
.

In [1] it was argued that initially for t ∼ 0 the carrier distribution varies little from its true
initial state being that of a constant over x . For this reason the authors assumed that in this
time domain

∂n

∂x
∼ 0,

and hence the resulting equation for such times is

∂n

∂ t
(x, t) = −µαn2(x, t).

Solving this and applying an initial condition of constant carrier density n0 we obtain the
same equation as (5.12); however, the previous analysis of this paper shows that the original
assumption in [1] of (5.12) being an approximate solution for small times t ,while first appearing
physically intuitive, is not precise. It has been shown that (5.12) is the exact solution satisfying
the initial and boundary conditions specified for all time t .

6. Discontinuous constant initial carrier distribution on the sample

We now illustrate two other cases of interest where much of the exact solution may be derived:

(i) N(ξ, 0) =
{

1 0 � ξ � ξa

0 ξa < ξ � h
ξa < 1 (6.1)

and

(ii) N(ξ, 0) =




0 0 � ξ < ξa

1 ξa � ξ � 1

0 1 < ξ � h

ξa < 1. (6.2)

See figures 4 and 5.
For case (i), we essentially retain all previous analysis for the system of a constant initial

carrier distribution over the entire sample. The difference for this system is that as yet there
is no carrier at the end of the sample and we may discard the �(T ) function. We also must
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Figure 5. Schematic diagram depicting the initial discontinuous carrier distribution.

account for a different boundary condition at the edge of the defined carrier distribution. That
is, equation (4.9) becomes

e(ξa(T ), T ) = 1

h̄

∫ ξa

0
s N(s, T ) ds. (6.3)

The initial condition of e(ξ, 0) varies slightly from (5.1) due to the new initial carrier
distribution (6.1) and we have

g(ξ) = ξ − 1 +
ξ2

a

2h̄
= ξ − β where β ≡ 1 − ξ2

a

2h̄
, (6.4)

where we have normalized the total number of carriers; i.e.,
∫ ξa

0 N(s, 0) ds = 1.
We therefore obtain

η = ξ + βT − (T )

T + 1
(6.5)

and the solution of

e(ξ, T ) = ξ − (T ) − β

(T + 1)
+ ′(T ), (6.6)

from which we obtain

N(ξ, T ) = 1

T + 1
. (6.7)

As for the previous system we apply the boundary condition at the edge of the charged area
and obtain a differential equation for (T ) as

′(T ) − (T )

(T + 1)
= ξ2

a − 2h̄(ξa − β)

2h̄(T + 1)
.

Substituting for β the right-hand side of the equation evaluates to zero, and we then obtain

′(T ) − (T )

(T + 1)
= 1 − ξa

T + 1
. (6.8)

From the definition of (4.28) we see that (0) = 0, and the only solution of (6.8) which
satisfies this condition is

(T ) = T (1 − ξa) (6.9)

and we have

e(ξ, T ) = ξ − β + 1 − ξa

(T + 1)
. (6.10)
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We note that while (T ) is not zero, its second derivative is, and hence the function F(t)
originating from integrating (4.2) is, for this system, also zero. Accordingly, we see that this
is due to no boundary condition being necessary at the free end of the sample (since there are
no carriers present there).

We may now write (6.5) as

η(ξ, T ) = ξ(0) = ξ(T ) + βT − T (1 − ξa)

T + 1
. (6.11)

Since (6.11) parameterizes points in the plane such that (6.10) satisfies the inhomogeneous
Burgers equation, we may use (6.11) to study the time evolution of particular points of interest
on the carrier distribution, namely the boundary. We observe that the evolution of the boundary
of the carrier distribution is given by

ξa = ξ(T ) + T (β − 1) (6.12)

and now ask as to which direction this carrier distribution boundary is moving by studying
points either side of the initial boundary point; i.e., ξ(T ) = ξa ± �ξ and thus

ξa = ξa ± �ξ + βT

T + 1
yielding

T = ±�ξ
ξ2

a

2h̄
where

ξ2
a

2h̄
> 0,

which implies that the carrier distribution boundary is moving to the right, as points left of
this boundary result in negative time indicating the boundary’s previous position. The carrier
profile may only diffuse as far as the end of the sample, hence from (6.12) we may determine
the time at which this occurs via

ξa = 1 + Tc(β − 1)

and solve for Tc to obtain

Tc = 2h̄(1 − ξa)

ξ2
a

, (6.13)

where the subscript merely indicates that, at this time, the system changes to that of one with
a constant carrier distribution over the entire sample. At that particular point in time, carriers
exist at the end of the sample and the �(T ) function must, after that time, be positive to account
for the correct behaviour of current density at the free end. All previous results now apply for
the behaviour of the charge diffusion on the sample, except that initially the carrier density is
now given by

n(ξ, Tc) = n0ξ
2
a

2h̄(1 − ξa) + ξ2
a

� n0 (6.14)

and we see that, as expected, the previous system begins with an initial carrier density less than
that which was initially defined. Note also that the total charge at the cut-over, in untransformed
coordinates, is

q(x, tc) = q0
A

2h̄(1 − A/L) + 1
,

where A is the initial boundary point of the carrier distribution on the x-coordinate system. We
see that the total charge at the cut-over is not simply reduced by a ratio of the initial length of
distribution over the final length of the entire sample—which would be the case if the carriers
were not diffusing off the sample at the grounded end; hence, as one would expect, the carriers
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are diffusing off the sample while the boundary of the charge distribution moves towards the
free end.

In the second case (ii) we have a similar approach as the first except that we must include
the extra complication of the �(T ) function. From the initial carrier distribution we have

g(ξ) = ξ − 1 + κ where κ ≡ (1 − ξ2
a )

2h̄
, (6.15)

which leads to

η = ξ + T (1 − κ) − (T )

(T + 1)
(6.16)

and the solution of

e(ξ, T ) = ξ − (T ) + κ

(T + 1)
+ ′(T ). (6.17)

We can determine the transformed current density as being

j (ξ, T ) = d

dT

[
κ − ξ + (T )

(T + 1)

]
. (6.18)

Therefore we obtain

�(T ) =
∫ T

0
j (1−, τ )dτ = κ − 1 + (T )

(T + 1)
. (6.19)

The boundary condition for the transformed electric field at the free end of the sample must
satisfy equation (4.19), hence we have

e(1−, T ) = κ

(T + 1)
− (h − 1)

h̄
�(T ), (6.20)

which must equate to the propagated solution satisfying the inviscid Burgers equation; hence

1 − (T ) + κ

(T + 1)
+ ′(T ) = κ

(T + 1)
− (h − 1)

h̄
�(T ). (6.21)

Substituting for �(T ) from (6.19) and rearranging we obtain

′(T ) − γ
(T )

(T + 1)
= χ

h̄(T + 1)
where χ ≡ (h − 1)(κ − 1) + h̄. (6.22)

Solving (6.22) we have

(T ) = χ

h̄γ
[(T + 1)γ − 1]. (6.23)

This results in

η(ξ, T ) = ξ + T (1 − κ)

(T + 1)
− χ

h̄γ
[(T + 1)γ−1 − (T + 1)−1]. (6.24)

From this we may again determine in which direction the boundary of the charge distribution
moves. Setting η(ξ, T ) = ξa in (6.24) and rearranging, we obtain

ξ(T ) − ξa = (ξa + κ − 1)T +
χ

h̄γ
((T + 1)γ − 1). (6.25)

We cannot solve (6.25) explicitly for T ; however, we may approach the problem by considering
the coefficients of T .

We note that

ξa + κ − 1 = ξa(2h̄ − ξa) − (2h̄ − 1)

2h̄
(6.26)
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Figure 6. Schematic plot of the trajectory of the discontinuity in the charge distribution on the
sample. We observe that the discontinuity passes back through the initial point towards the origin.

and since 0 � ξa � 1 and h̄ > 1 by definition we obtain the bounds

− (2h̄ − 1)

2h̄
� ξa + κ − 1 � 0; (6.27)

hence the leading coefficient of the linear term in (6.25) is negative. The coefficient of the
second term equates to

χ

h̄γ
= 1

γ

(
1 − ξ2

a (h − 1)

2h̄2

)
(6.28)

and

ξ2
a (h − 1)

2h̄2
= ξ2

a (h − 1)

2(1 + ε(h − 1))2
< 1 (6.29)

since we take the dielectric constant of the material to be greater than unity, implying that
χ

h̄γ
> 0; however, we also note that 0 < γ < 1 and hence the second term will always

eventually be dominated by the first, and thus for some time Ti we obtain

ξ(Ti ) − ξa = (ξa + κ − 1)Ti +
χ

h̄γ
((Ti + 1)γ − 1) < 0

after which it remains so for all T > Ti . The sign of ξ(T ) − ξa is relative to the initial point ξa

with negative values corresponding to points left of ξa , and positive to the right of ξa . We have
therefore shown that the discontinuity may at first approach the free end of the sample, after
which there exists a time Ti when the boundary has returned to ξa and then progresses past
this initial point towards the origin (see figure 6). Once the boundary reaches the grounded
end of the sample (the origin) the carrier density is then a constant over the entire surface of
the sample, and we again return to the first system studied previously in section 5.

We note that the discontinuity in the carrier distribution as it returns to its initial point
continues through to the origin and does not oscillate. As the boundary initially travels towards
the free end of the sample, charge feeds into the weight of the delta function, until such time
as enough charge has accumulated and forces the boundary to move back towards the origin.
When the boundary returns to its initial position, and due to the slow decay of carriers from
the weight of the delta function (as seen in figure 3), there is still enough charge to force the
boundary past its initial position towards the origin. This provides a quantitative explanation
as to why we do not see the boundary oscillate.
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7. Conclusion

Starting from assumptions similar to those proposed in [1] we have re-derived the general
equations governing surface carrier diffusion in the surface of an insulator. We have shown
that for the special case of one-dimensional carrier diffusion the equations for the electric field
reduce to that of the inhomogeneous inviscid Burgers equation. A general solution for an
initial value problem of this equation was derived via the method of characteristics. Using
this solution in conjunction with boundary conditions pertaining to a system similar to that
in [1], solutions have been derived for three particular initial values of carrier distribution. It
has been shown that in order to obtain a physically consistent description of carrier diffusion
for this one-dimensional system, the carrier density needed to be off-set by a weighted delta
function of charge at the free end of the sample. This provided insight into the function F(t)
originating from integrating (4.2), and it was seen that this function is uniquely determined via
boundary conditions on the sample. For the system of an initial constant carrier distribution
over the entire sample, the same form of carrier density was obtained as in [1]. It is argued
in [1] that this solution is an approximation valid for t 	 1; however, it has been shown that
this solution is indeed exact for all time t . It will be shown in a later paper that the hyperbolic
solutions of the carrier density provide an adequate fit to experimental observations and allow
for the determination of a sample’s resistivity that is in excellent agreement with literature.
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